The UTX gene escapes X inactivation in mice and humans.

نویسندگان

  • A Greenfield
  • L Carrel
  • D Pennisi
  • C Philippe
  • N Quaderi
  • P Siggers
  • K Steiner
  • P P Tam
  • A P Monaco
  • H F Willard
  • P Koopman
چکیده

We recently have identified a ubiquitously transcribed mouse Y chromosome gene, Uty , which encodes a tetratricopeptide repeat (TPR) protein. A peptide derived from the UTY protein confers H-Y antigenicity on male cells. Here we report the characterization of a widely transcribed X-linked homologue of Uty , called Utx , which maps to the proximal region of the mouse X chromosome and which detects a human X-linked homologue at Xp11.2. Given that Uty is ubiquitously transcribed, we assayed for Utx expression from the inactive X chromosome (Xi) in mice and found that Utx escapes X chromosome inactivation. Only Smcx and the pseudoautosomal Sts gene on the mouse X chromosome have been reported previously to escape inactivation. The human UTX gene was also found to be expressed from Xi. We discuss the significance of these data for our understanding of dosage compensation of X-Y homologous genes in humans and mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Target sequencing and CRISPR/Cas editing reveal simultaneous loss of UTX and UTY in urothelial bladder cancer

UTX is a histone demethylase gene located on the X chromosome and is a frequently mutated gene in urothelial bladder cancer (UBC). UTY is a paralog of UTX located on the Y chromosome. We performed target capture sequencing on 128 genes in 40 non-metastatic UBC patients. UTX was the most frequently mutated gene (30%, 12/40). Of the genetic alterations identified, 75% were truncating mutations. U...

متن کامل

The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia.

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive form of leukemia that is mainly diagnosed in children and shows a skewed gender distribution toward males. In this study, we report somatic loss-of-function mutations in the X-linked histone H3K27me3 demethylase ubiquitously transcribed X (UTX) chromosome, in human T-ALL. Interestingly, UTX mutations were exclusively present in male T...

متن کامل

Sex-specific differences in expression of histone demethylases Utx and Uty in mouse brain and neurons.

Although X inactivation is thought to balance gene expression between the sexes, some genes escape inactivation, potentially contributing to differences between males and females. Utx (ubiquitously transcribed tetratricopeptide repeat gene on X chromosome) is an escapee gene that encodes a demethylase specific for lysine 27 of histone H3, a mark of repressed chromatin. We found Utx to be expres...

متن کامل

Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases.

Covalent modifications of histones, such as acetylation and methylation, play important roles in the regulation of gene expression. Histone lysine methylation has been implicated in both gene activation and repression, depending on the specific lysine (K) residue that becomes methylated and the state of methylation (mono-, di-, or trimethylation). Methylation on K4, K9, and K36 of histone H3 ha...

متن کامل

X Chromosome Inactivation in Opioid Addicted Women

Introduction: X chromosome inactivation (XCI) is a process during which one of the two X chromosomes in female human is silenced leading to equal gene expression with males who have only one X chromosome. Here we have investigated XCI ratio in females with opioid addiction to see whether XCI skewness in women could be a risk factor for opioid addiction. Methods: 30 adult females meeting DS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 7 4  شماره 

صفحات  -

تاریخ انتشار 1998